Predicting traffic flow and volume in Northern Virginia and
Washington D.C. capital region

Sarah Liang - sarahliang@ucsb.edu

Abstract

Using traffic flow and volume data, I fitted SARIMA and ARMAX model to the data, with the goal to
forecast and predict traffic volume in the next 15 minutes in the locations at which my data was recorded.

Intro

I decided to use traffic flow data. My data set contains 1261 timesteps in the training split (and 840 timesteps
in the testing split), involving traffic volume measurements along two major highways in Northern Virginia
and Washington D.C. capital region, measured every 15 minutes at 36 sensor locations. The reason I chose
traffic volume was that it was something that directly affected people. Prediction of traffic in certain areas
can actually improve the livelihoods of people living in those areas. My analysis and prediction using this
data can be used to analyze and improve the sustainability of cities.

Methodology

With a SARIMA model, it is easier to apply ARIMA model concepts to real life data that is not automatically
stationary, or might have seasonal components that aren’t considered in a basic ARIMA model. Often
times, dependence on the past can induce seasonality in our data. As an overview, the ARIMA and
SARIMA models rely heavily on the interactions of autoregression and moving average. Autoregression
is when a time series depends on a linear combination of lagged instances of the times series itself and
white noise residual. Moving average is behavior when a time series depends on instances of lagged white noise.

A normal ARIMA model has parameters p, d, and q, which represent autoregressive operator, difference, and
moving average operator respectively.

A SARIMA model is an normal ARIMA model with four more parameters that have to do with the seasonal
part of the model: P, D, Q, and S which represent seasonal autoregressive operator, seasonal difference,
seasonal moving average operator, and seasonal period respectively.

An ARMAX model is an ARMA model with the incorporation of exogeneous variables.

Since my data set also includes other variables, we can explore the dependencies between our traffic data and
the exogenous variables using an ARMAX model.


mailto:sarahliang@ucsb.edu
https://www.kaggle.com/datasets/jvthunder/urban-traffic-flow-csv?resource=download&select=test.csv
https://archive.ics.uci.edu/ml/datasets/Traffic+Flow+Forecasting

Initial Look at Data

Let’s take a look at our data, starting with the training split.
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Immediately, the time series does not look stationary. There is a upwards trend overall, but also some very
obvious patterns and peaks in the plot that may suggest signal or seasonality in the data. There is also
inconsistent, increasing variance.

Transforming Data

Even though the variance is increasing and inconsistent, I want to avoid log transforming immediately since
my data values range from 0 to 1 inclusive. So, I will add the constant 1 to all the data points to avoid
taking log(0). T will also try a cube root transform.
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ACF and PACF Interpretation

Now, let’s look at the ACF and PACF of the untransformed data to see if the series resembles a specific
model.
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I will try to difference with 1ag=36 because there are peaks at 1ag=36. This is due to the data being recorded
at 36 different locations sequentially, so this will take care of seasonality in this sense.
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After differencing with 1ag=36, the series now appears with somewhat constant expectation and the variance
doesn’t vary with any obvious pattern.
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There is some tailing off in both ACF and PACF at lag 1 for both ut_logdiff and ut_cubediff. This tells
me this series is at the very simplest a SARIM A(1,0,1)(0,1,0)[36] model, with D=1 for seasonal difference.
Upon closer look, the ACF is tailing off at each season and the PACF is cutting off one lag after each season
(noticeable from the strong negative peak indicating the season, then a positive peak, then it cuts off). So,
we may consider SARIM A(1,0,1)(0, 1,2)[36] model or a SARIM A(3,0,0)(0, 1, 2)[36] model, since it seems
that PACF is cutting off after lag 3 and ACF tails off, which suggest AR(3).

I will use the cube root transformed data from here on since the peaks were more clear in this one, compared
to the log transformed.



SARIMA /ARIMA Modelling and Residual Diagnostics and Interpretation

Model: (1,0,2) (0,1,2) [36] Standardized Residuals
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Model: (1,0,2) Standardized Residuals
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The residual diagnostics of the SARIMA(1,0,2)(0,1,2)[36] model on the seasonal difference of the cube
rooted data look overall adequate. The standardized residuals somewhat resemble random white noise in the
first plot and the ACF of the residuals look ideal, with not much pattern. The Normal Q-Q Plot of the
standardized residuals snakes away from the blue line only minimally at the ends. This suggests the residuals
follow normality overall. Though, the p-values for the Ljung-Box statistic are significant as lags increas,
which is not a good sign. However, with the AIC very low at -5796.12, I would still use this model even if the
Ljung-Box p-values don’t look too ideal.

On the other hand, the residual diagnostics of the ARIM A(1,0,2) model on the seasonal difference of the
cube rooted data look a bit better compared to the previous model. The standardized residuals in the first
plot resemble white noise more consistently than in the previous model. The ACF of the residuals are more
consistently within the blue dotted lines close to 0, however, the peak at 36 is still prevalent. This may
insinuate that the seasonality is not entirely taken care of by the lagged difference alone. The Normal Q-Q
Plot looks much better and the residuals follow the blue line more closely. The biggest difference is the
Ljung-Box p-values. They are all not significant, which is desired. This model achieves an AIC of -5972.55,
which is still quite low.

I will choose the SARIMA(1,0,2)(0, 1,2)[36] model to continue, as it considers the seasonality.



Forecasting

Predicted traffic volume at each of the 36 locations
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The forecasted data for the next 36 points, i.e. predicted traffic volume at each of the 36 locations 15 minutes
later, looks to follow similar pattern to the previous seasons. I consider this SARIM A model adequate for
this data as it appears to make successful predictions.



ARMAX Modelling

Since my data set includes other variables, I would like to take a look at some of them. The column names
are ambiguous and don’t really match up with the description from the UCI archive, so I have a limited
selection. The variables that interest me are the hour of day and number of lanes.
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It seems the number of lanes has correlation with the traffic volume. The hour of the day seems to increase
along with variance, also suggesting some correlation.

Now, let’s look at what lag value I should use for the predictors, not including hour of the day because it
doesn’t match well with it being just a step function and all.

I will use VARselect () in the vars library to choose an ideal lag for the model.

## $selection
## AIC(n) HQ(n) SC(n) FPE(n)

## 10 10 10 10

##

## $criteria

## 1 2 3 4 5

## AIC(n) -5.5195379 -5.573600642 -5.706964601 -5.926007956 -6.038087058
## HQ(n) -5.5072016 -5.555096097 -5.682291873 -5.895167047 -6.001077967
## SC(n) -5.4867213 -5.524375717 -5.641331366 -5.843966413 -5.939637206
## FPE(n) 0.0040077 0.003796785 0.003322744 0.002669118 0.002386122
## 6 7 8 9 10
## AIC(n) -6.067477789 -6.106214758 -6.141944034 -6.172987984 -6.320318537
## HQ(n) -6.024300516 -6.056869304 -6.086430398 -6.111306167 -6.252468538
## SC(n) -5.952619629 -5.974948289 -5.994269257 -6.008904898 -6.139827143
## FPE(n) 0.002317014 0.002228978 0.002150747 0.002085008 0.001799383

It seems the best lag is 10 for the model. Let’s fit the ARM AX model with p=10. Let’s look at the
coefficients using lag 10 in the model.



##

## Call:

## lm(formula = y ~ -1 + ., data = datamat)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.305824 -0.039859 0.003147 0.038362 0.256322

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|t])

## ut_data.ll 4.852e-01 3.424e-02 14.169 < 2e-16 **x
## ut_lanes.1ll 5.463e-03 3.508e-03 1.557 0.119620

## ut_data.l2 2.656e-02 3.666e-02 0.724 0.469000

## ut_lanes.12 2.355e-02 3.460e-03 6.806 1.56e-11 **x*
## ut_data.1l3 -2.989e-01 3.612e-02 -8.276 3.29e-16 ***
## ut_lanes.1l3 -9.100e-03 3.470e-03 -2.623 0.008833 **
## ut_data.l4 3.044e-01 3.673e-02 8.289 2.96e-16 *x*x
## ut_lanes.14 1.711e-02 3.464e-03 4.939 8.95e-07 **x*
## ut_data.lb 2.101e-01 3.715e-02 5.656 1.93e-08 **x*
## ut_lanes.1l5 -7.237e-03 3.574e-03 -2.025 0.043092 *
## ut_data.l6 -2.620e-01 3.812e-02 -6.873 9.97e-12 ***
## ut_lanes.l6 6.566e-03 3.490e-03 1.881 0.060170 .
## ut_data.l7 1.401e-01 3.666e-02 3.821 0.000140 *x*x*
## ut_lanes.1l7 1.127e-02 3.351e-03  3.363 0.000795 *x*x*
## ut_data.18 5.490e-02 3.426e-02 1.602 0.109366

## ut_lanes.1l8 6.968e-03 3.206e-03 2.174 0.029923 *
## ut_data.l1l9 6.674e-03 3.437e-02 0.194 0.846065

## ut_lanes.l9 -2.976e-03 3.216e-03 -0.925 0.354993

## ut_data.l110 -1.657e-01 3.197e-02 -5.182 2.56e-07 ***
## ut_lanes.110 2.167e-02 3.192e-03 6.788 1.76e-11 *%*x*
## const -2.474e-01 4.695e-02 -5.269 1.62e-07 *x*x
## trend 1.314e-04 1.229e-05 10.691 < 2e-16 *x*x
##t ——-

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
##

## Residual standard error: 0.07355 on 1229 degrees of freedom
## Multiple R-squared: 0.7185, Adjusted R-squared: 0.7137
## F-statistic: 149.4 on 21 and 1229 DF, p-value: < 2.2e-16

There is a significant relationship between traffic volume and the number of lanes at lags 2 through 7 and at
lag 10.

I will use these lags in my ARMAX model.

ARMAX Modelling Results
We have the following ARMAX model:

N

T, = —0.2474-0.00013¢t+0.0236 L;_2—0.009L;_3+0.017L;_4—0.0072L;_54-0.00657L;_¢+0.0113L;_740.02167L;_1¢

such that T; and L; denote traffic flow and number of lanes at time t respectively. We can see that the R? is
about 0.71, meaning 71% of the variability in traffic volume can be explained by the number of lanes. There
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is a very strong relationship between the two variables.
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##
## Portmanteau Test (adjusted)
##

## data: Residuals of VAR object varl
## Chi-squared = 3988.1, df = 104, p-value < 2.2e-16

The ACF plots look to follow that of white noise, with the peak at lag 0 and nearly 0 otherwise. Thus, there
looks to be no correlation in the residuals. The adjusted Postmanteau test has a p-value less than 0.05, so we
can reject the null that the ACF of the residuals are not different from zero.

ARMAX forecast ARMAX forecast — Closer Look
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As you can tell, the ARMAX forecast is rather flat. The ARMAX forecast is nearly constant, settling into a
flat line. It seems to capture the average of the points, which is not enough and ignores the complexity
of seasonality and variance. It does not capture enough behavior from the original data like the SARIMA
model does.
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Conclusion

The SARIMA model is very accurate in capturing the seasonal components in the original traffic flow
data. Forecasting using the SARIMA model is also impressive and accurate to the actual traffic behavior.
On the other hand, the ARMAX model provides a vague, innaccurate forecast result. It is somewhat
constant in mean, which does somewhat line up with the actual mean of the actual data. However, the
essence of the actual data comes from the seasonality, which is something the ARMAX model fails to represent.

Regardless, fitting these models on actual data and seeing results is still one of my goals here. I achieved a
fantastic result from the SARIMA model, so that is something I achieved well. In this project, we discovered
how traffic flow varies in these 36 locations within the Northern Virginia and Washington D.C. areas (which
results in the seasonality of the data). Though, we now know that the overall increasing variance in the
original data is likely correlated with the hour of the day. As the hour of the day grows from midnight to
midnight, the variance grows. The number of lanes can also affect traffic flow. Intuitively this makes sense,
the more lanes the less congested it is to drive. Overall, the SARIMA model produced a great result, and
I can grow further in this project to achieve better results, perhaps in considering other models. Or I can
search for other traffic data for better and more variety in variables to use in the ARMAX model.

12



Resources

Traffic Flow Data Set on Kaggle
Data Set Description on UCI Machine Learning Archive

Time Series Analysis and Its Applications

Appendix

# READ IN DATA, CREATE TIME SERIES ORBJECT
set.seed (2536)

library(astsa)

library(dplyr)

ut_train <- read.csv("urbantraffic_train.csv")
ut_test <- read.csv("urbantraffic_test.csv")

ut <- ut_train %>%
select(timestep, traffic)

ut_data <- ts(ut$traffic, start=0, end=1260)
plot.ts(ut_data)

# TRANSFORM DATA

# goes from about 0.1 to 0.5 now instead of 0.6 (variance is a little less volatile)
ut_log <- log(ut_data+1)

plot.ts(ut_log)

# wvariance looks much more stable here
ut_cube <- (ut_data)"(1/3)
plot.ts(ut_cube)

# ACF/PACF OF ORIGINAL DATA
par (nfrow=c(1,2))

acf (ut_data, lag.max=40)
pacf (ut_data, lag.max=40)

# SEASONAL DIFFERENCE OF TRANSFORMED DATA
ut_logdiff <- diff(ut_log, lag=36)
plot.ts(ut_logdiff)

ut_cubediff <- diff(ut_cube, 1lag=36)
plot.ts(ut_cubediff)
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# ACF/PACF OF DIFFERENCED TRANSFORMED DATA

par( c(2,2))

# log transform + differenced
acf(ut_logdiff, 150)
pact (ut_logdiff, 150)

# cube root transform + differenced
acf (ut_cubediff, 150)
pact (ut_cubediff, 150)

# FITTING SARIMA MODELS
sarima(ut_cubediff, 1,d=0,q9=2, 0,D=1,Q=2,5=36)

# the following ARIMA(1,0,2) model <s from auto.arima
sarima(ut_cubediff, 1,d=0,9=2)

# SARIMA FORECAST
sarima.for(ut_data, 36, 1,d=0,q9=2, 0,D=1,Q=2,5=36,
"Predicted traffic volume at each of the 36 locations")

# COMBINING HOUR OF THE DAY DUMMY VARIABLES
library(tidyr)

# combining all hour of the day dummy columns
ut_hourdata <- ut_train %>%

mutate ( replace (hour_2, hour_2==1, 2)) %>/
mutate ( replace(hour_3, hour_3==1, 3)) %>/
mutate ( replace(hour_4, hour_4==1, 4)) %>%
mutate ( replace(hour_5, hour_5==1, 5)) %>%
mutate ( replace(hour_6, hour_6==1, 6)) %>%
mutate ( replace (hour_7, hour_7==1, 7)) %>/
mutate ( replace(hour_8, hour_8==1, 8)) %>/
mutate ( replace(hour_9, hour_9==1, 9)) %>%
mutate( replace(hour_10, hour_10==1, 10)) %>%
mutate ( replace(hour_11, hour_11==1, 11)) %>}
mutate ( replace(hour_12, hour_12==1, 12)) %>’
mutate ( replace(hour_13, hour_13==1, 13)) %>%
mutate ( replace(hour_14, hour_14==1, 14)) %>’
mutate( replace(hour_15, hour_15==1, 15)) %>/
mutate ( replace(hour_16, hour_16==1, 16)) %>’
mutate ( replace(hour_17, hour_17==1, 17)) %>%
mutate ( replace(hour_18, hour_18==1, 18)) %>’
mutate ( replace(hour_19, hour_19==1, 19)) %>’
mutate( replace(hour_20, hour_20==1, 20)) %>’
mutate ( replace(hour_21, hour_21==1, 21)) %>
mutate ( replace(hour_22, hour_22==1, 22)) %>%
mutate ( replace(hour_23, hour_23==1, 23)) %>/
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mutate (hour 24 = replace(hour_24, hour_24==1, 24)) I>%
mutate(across(hour_1:hour_24, na_if, 0))%>%
unite(hour, hour_1:hour_24, sep="", na.rm=TRUE)Y>%
select(timestep, hour)

# number of lanes
ut_lanesdata <- ut_train %>%
select(timestep, no_roads)

# CREATING TIME SERIES OBJECTS FOR POTENTIAL PREDICTORS
ut_hour <- ts(ut_hourdata$hour, start=0, end=1260)
ut_lanes <- ts(ut_lanesdata$no_roads, start=0, end=1260)
par (nfrow=c(3,1))

plot.ts(ut_data)

plot.ts(ut_hour)

plot.ts(ut_lanes)

# USING VARSELECT
library(vars)

x <- cbind(ut_data, ut_lanes)
VARselect(x, type="both")

varl <- VAR(x, p=10, type="both")
summary (varl)$varresult$ut_data

# RESIDUAL DIAGNOSTICS OF ARMAX MODEL
acf (resid(varl))
serial.test(varl, lags.pt=36, type="PT.adjusted")

# ARMAX FORECAST
armax_pred <- predict(varl, n.ahead=36, ci=.95)

armax_forecast <- ts(armax_pred$fcst$ut_datal[,1], start=1260, end=1296)

par (nfrow=c(1,2))
ts.plot(ut_data, armax_forecast, col=c("blue", "purple"))
title("ARMAX forecast")

legend("topleft",legend= c("actual", "ARMAX"), col=c("blue","purple"), 1lty=1)

ts.plot(ut_data, armax_forecast, col=c("blue", "purple"), xlim=c(1150, 1296))
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title("ARMAX forecast - Closer Look")
legend("topleft",legend= c("actual", "ARMAX"), col=c("blue","purple"), 1lty=1)
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